110 research outputs found

    Proposed EN 1992 tension lap strength equation for good bond

    Get PDF
    The paper is concerned with the design of tension laps in reinforced concrete structures. The most recent codified design recommendations for reinforcement laps and anchorages are found in fib Model Code 2010 (MC2010). These recommendations have heavily influenced the draft revision of EN 1992 which is due for publication in 2023. The draft EN 1992 proposal for tension laps is still under development with the main point of discussion being the basic multiplier required to achieve the level of safety prescribed by EN 1990. This is contentious since laps designed to MC2010 can be significantly longer than laps designed to EN 1992 (2004) which many UK designers consider excessive in comparison with previous UK practice. The paper examines the safety of tension laps and proposes a refined design equation for inclusion in the 2023 revision to EN 1992. The proposed design equation achieves the level of safety required by EN 1990 whilst giving lap and anchorage lengths more consistent with current practice than MC2010

    CONTROLLING CRACK WIDTHS IN WALLS RESTRAINED AT THEIR BASE AND ENDS

    Get PDF
    Following casting, concrete cracks if early-age thermal (EAT) and long-term (LT) shrinkage movement is restrained. Crack control is of particular importance in walls which rely solely on concrete for water tightness, such as retaining walls and water resisting tanks. It is well established that the cracking behaviour of end restrained members is very different from that of edge restrained walls. For this reason, both restraint types are considered separately in literature and in codes of practice such as Eurocode 2 (EN 1992). In reality, combined edge and end restraint is present in many reinforced concrete (RC) structures. In the absence of design recommendations for combined restraint, U.K. engineers commonly design crack control reinforcement for end restraint as it is the worst case. In the authors’ opinion, this is wasteful as it leads to the provision of unnecessary reinforcement. To this end, an experimental programme was conducted to investigate cracking in RC walls with combined base and end restraint. The measured and calculated crack widths are compared with the predictions of EN 1992 for edge and end restraint. The results suggest that crack widths in walls with combined edge and end restraint can be calculated with the EN 1992 equations for cracking in edge restrained walls

    Efficient 3D modelling of punching shear failure at slab-column connections by means of nonlinear joint elements

    Get PDF
    Failures of isolated slab-column connections can be classified as either flexural or punching. Flexural failure is typically preceded by large deformation, owing to flexural reinforcement yield, unlike punching failure which occurs suddenly with little if any warning. This paper proposes a novel numerical strategy for modelling punching failure in which nonlinear joint elements are combined with nonlinear reinforced concrete (RC) shell elements. The joint elements are employed to model punching failure which limits force transfer from slabs to supporting columns. The shear resistance of individual joint elements is calculated using the critical shear crack theory (CSCT) which relates shear resistance to slab rotation. Unlike other similar models reported in the literature, the joint strength is continually updated throughout the analysis as the slab rotation changes. The approach is presented for slabs without shear reinforcement but could be easily extended to include shear reinforcement. The adequacy of the proposed methodology is verified using experimental test data from isolated internal RC slab-column connections tested to failure under various loading arrangements and slab edge boundary conditions. Comparisons are also made with the predictions of nonlinear finite element analysis using 3-D solid elements, where the proposed methodology is shown to compare favourably whilst requiring significantly less computation time. Additionally, the proposed methodology enables simple calculation of the relative contributions of flexure, torsion and eccentric shear to moment transfer between slab and column. This information is pertinent to the development of improved codified design methods for calculating the critical design shear stress at eccentrically loaded columns

    Investigating the effect of tunnelling on existing tunnels

    Get PDF
    A major research project investigating the effect of tunnelling on existing tunnels has been completed at Imperial College London. This subject is always of great concern during the planning and execution of underground tunnelling works in the urban environment. Many cities already have extensive existing tunnel networks and so it is necessary to construct new tunnels at a level beneath them. The associated deformations that take place during tunnelling have to be carefully assessed and their impact on the existing tunnels estimated. Of particular concern is the serviceability of tunnels used for underground trains where the kinematic envelope must not be impinged upon. The new Crossrail transport line under construction in London passes beneath numerous tunnels including a number of those forming part of the London Underground networ

    Experimental investigations of bolted segmental grey cast iron lining behaviour

    Get PDF
    The need for the research reported in this paper was driven by the Crossrail project in London for which new tunnels were constructed close to numerous existing operational tunnels of the London Underground (LU) network. This research is based on experimental work conducted on half-scale grey cast iron (GCI) tunnel lining segments with chemical composition similar to the Victorian age GCI segments in the LU network. This paper discusses the deformation behaviour of the bolted segmental lining under the influence of factors such as overburden pressure, bolt preload and presence of grommets at small distortions. The measured behaviour of the segmental lining is compared against the calculated response of a continuous lining based on the assumption of elasticity. The industry practice for tunnel lining assessment is to calculate the induced bending moment in the tunnel lining using an elastic continuum model, while adopting a reduced lining stiffness to take into account the presence of the joints. Case studies have recorded that both loosening and tightening of lining bolts have been used as mitigation measures to reduce the impact of new tunnel excavations on existing GCI tunnels. The experimental work on the half-scale GCI lining has shown that a bolted segmental lining behaves as a continuous ring under small distortions imposed when subjected to hoop forces relevant to the depth of burial of LU tunnels. In the presence of hoop force, joint opening was minimal and the magnitude of preload in the bolts had little impact on the behaviour of the lining. It is therefore concluded that disturbance of the bolts in existing tunnels is not recommended as a mitigation measure as in addition to being ineffective it is both time consuming and introduces the risk of damaging the tunnel lining flanges

    Evaluating and Mapping Internet Connectivity in the United States

    Get PDF
    We evaluated Internet connectivity in the United States, drawn from different definitions of connectivity and different methods of analysis. Using DNS cache manipulation, traceroutes, and a crowdsourced “site ping” method we identify patterns in connectivity that correspond to higher population or coastal regions of the US. We analyze the data for quality strengths and shortcomings, establish connectivity heatmaps, state rankings, and statistical measures of the data. We give comparative analyses of the three methods and present suggestions for future work building off this report

    Experimental assessment of crack prediction methods in international design codes for edge restrained walls

    Get PDF
    Through cracking resulting from external restraint of early-age thermal and long-term shrinkage strain is a significant issue in the construction industry as it causes leakage in water retaining and resisting structures. Concerningly, a recent field study found restraint induced crack widths to frequently exceed crack widths calculated in accordance with UK design practice (BS EN 1992-3 and CIRIA C766). Due to a lack of pertinent data, the reasons for this are uncertain. This paper compares measured and predicted crack widths in a series of 12 full-scale edge restrained walls constructed in the laboratory. The tests examine the influence on cracking of key parameters including concrete mix design, wall reinforcement ratio, wall aspect ratio and relative wall to base cross-sectional area. The measured and calculated crack widths are compared at first cracking and at the end of monitoring. Two types of behaviour were noted in the tests, dependent on when the first cracks formed. Cracking either occurred at early age, within 24 h of stripping the formwork, or later due to restraint of combined early age thermal contraction and shrinkage. The final crack widths were greatest, by a considerable margin, in walls where cracks formed at early age, despite the initial cracks being very narrow. BS EN 1992-3 gives the best estimates of crack width in the two walls that cracked at early age. Crack widths in these walls were significantly underestimated by C766. In the other 10 walls, which cracked later, C766 tends to give the best estimate of crack width

    External beam-column joints: design to Eurocode 2

    Get PDF
    • …
    corecore